
Carnegie Mellon
Software Engineering Institute

Quality Attribute
Workshops (QAWs),
Third Edition

Mario R. Barbacci

Robert Ellison

Anthony J. Lattanze

Judith A. Stafford

Charles B. Weinstock

William G. Wood

August 2003

n.eTRlBUTlON STATEMENT A

^Distribution Uniimited

TECHNICAL REPORT
CMU/SEI-2003-TR-016

ESC-TR-2003-016

20031202 093

t^>T*"«*'**<^fflR*p«''^r*R^
■'«y«rTCS.*'"ft,t!>M-^-^-?i-

•VUfms^wevts^

CamegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Quality Attribute
Workshops (QAWs),
Third Edition

CMU/SEI-2003-TR-016
ESC-TR-2003-016

Mario R. Barbacci

Robert Ellison

Anthony J. Lattanze

Judith A. Stafford

Charles B. Weinstock

William G. Wood

August 2003

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published
in the interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document
should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. The Government of the United States has a royalty-
free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any
manner, and to have or permit others to do so, for government purposes pursuant to the copyright
license under the clause at 252.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of
our Web site (http://www.sei .cmu.edu/publications/pubweb.html).

Table of Contents

Abstract v"

1 Introduction 1

2 Motivation 3

3 QAW IWetiiod 7
3.1 Step 1: QAW Presentation and Introductions 8
3.2 Step 2: Business/iVlission Presentation 8

3.3 Step 3: Architectural Plan Presentation 8

3.4 Step 4: Identification of Architectural Drivers 9

3.5 Step 5: Scenario Brainstorming 9

3.6 Step 6: Scenario Consolidation 10

3.7 Step 7: Scenario Prioritization 10

3.8 Step 8: Scenario Refinement 11

4 QAW Benefits 13

5 Conclusions IS

Appendix A QAW Roles and Template 17

Appendix B Example Scenario Refinement 21

References 23

CMU/SEI-2003-TR-016

CMU/SEI-2003-TR-016

List of Figures

Figure 1: Traditional System Development 2

CMU/SEI-2003-TR-016

CMU/SEI-2003-TR-016

List of Tables

Table 1

Table 2

Table 3

Blank Raw Scenario Table 18

Blank Scenario Refinement Table 19

Example Scenario Refinement Table 21

CMU/SEI-2003-TR-016

CMU/SEI-2003-TR-016

^

Abstract

The Quality Attribute Workshop (QAW) is a facilitated method that engages system stake-
holders early in the life cycle to discover the driving quality attributes of a software-intensive
system. The QAW was developed to complement the Architecture Tradeoff Analysis Meth-
od^**^ (ATAM^**) and provides a way to identify important quality attributes and clarify system
requirements before the software architecture has been created.

This is the third edition of a technical report describing the QAW. We have narrowed the scope
of a QAW to the creation of prioritized and refined scenarios. This report describes the newly
revised QAW and describes potential uses of the refined scenarios generated during it.

CMU/SEI-2003-TR-016

s

CMU/SEI-2003-TR-016

1 Introduction

In software-intensive systems, the achievement of quahties—such as performance, availabil-
ity, security, and modifiability—is dependent on the software architecture. In addition, quality
attributes of large systems can be highly limited by a system's requirements and constraints.
Thus, it is in our best mterest to try to determine as early as possible whether the system will
have the desired qualities. Quality requirements should be described concretely before an

architecture is developed.

We distinguish system architecture from software architecture according to the following two

definitions:

system architecture: the fundamental and unifying system structure defined in
terms of system elements, interfaces, processes, constraints, and behaviors

[INCOSE96]

software architecture: the structure or structures of the system, which comprise

software elements, the externally visible properties of those elements and the

relationships among them [Bass 03]

Development of software-intensive systems begins with a description of the system's opera-
tion and high-level functional requirements, and any constraints on the system, such as legacy
or new systems. From these items, the architect derives a system architecture and a software
architecture that can then be used to drive detailed design and implementation. (See Figure 1.)
The process of creating those architectures is often unstructured.^ Quality attributes could be
missing from the requirements document, and even if addressed adequately, they are often

vaguely understood and weakly articulated.

The Quality Attribute Workshop (QAW) is a facilitated method that engages system stake-
holders early in the system development life cycle to discover the driving quality attributes of
a software-intensive system. The QAW is system-centric and stakeholder focused; it is used
before the software architecture has been created. The QAW provides an opportunity to gather
stakeholders together to provide input about their needs and expectations with respect to key

quality attributes that are of particular concern to them.

1. The problems arise from software, not system engineering practices. In fact, system engineers usually build reliability, avail-
ability, and maintainability (RAM) models to evaluate quality attributes, and build simulation models to test communication
loads and load sharing.

CMU/SEI-2003-TR-016

Start Operational descriptions
High-level functional requirements

Legacy systems
New systems

1^ Quality attributes are often missing
I from requirements documents, or
I are vaguely understood and weakly
"^ articulated.

Specific-system architecture
Software architecture

Detailed design
Implementation

Figure 1: Traditional System Development

Both the system and software architectures are key to realizing quality attribute requirements
in the implementation. Although an architecture cannot guarantee that an implementation will
meet its quality attribute goals, the wrong architecture will surely spell disaster. As an exam-
ple, consider security. It is difficult, maybe even impossible, to add effective security to a sys-
tem as an afterthought. Components as well as communication mechanisms and paths must be
designed or selected early in the life cycle to satisfy security requirements. The critical quality
attributes must be well understood and articulated early in the development of a system, so the
architect can design an architecture that will satisfy them. The QAW is one way to discover,
document, and prioritize a system's quality attributes early in its life cycle.

It is important to point out that we do not aim at an absolute measure of quality; rather our pur-
pose is to identify scenarios from the point of view of a diverse group of stakeholders (e.g.,
architects, developers, users, sponsors). These scenarios can then be used by the system engi-
neers to analyze the system's architecture and identify concerns (e.g., inadequate performance,
successful denial-of-service attacks) and possible mitigation strategies (e.g., prototyping,
modeling, simulation).

Section 2 describes the motivation for holding QAWs, Section 3 describes the QAW method,
and Section 4 describes its benefits. Section 5 concludes this report with some references to
experiences using the method. Appendix A provides a template for conducting a QAW, and
Appendix B provides an example of scenario refinement.

CMU/SEI-2003-TR-016

Motivation

Functionality describes the capabilities of the system, and every system has an architecture,
regardless of whether it's monolithic. If the only criterion for acceptance were getting the right
answer, we would not need to worry about architecture; unstructured, monolithic systems
would suffice. However, our concerns often go beyond getting functionally correct answers. A
system that is fit for a purpose should meet both functional and quality attribute requirements.
If performance goals aren't met, the right answer may not be delivered on time; if the system is
too fragile (even though it produces the right answer), it won't be available when needed; if it
is easily compromised, it will not be secure enough and its answers won't be protected; if mak-
ing a modification to one part of the system affects a large percentage of the rest of it, the sys-
tem won't be easily modifiable. The truth is that qualities like interoperability, modifiability,
and portability matter—in some cases as much as functionality does.

The achievement of quality attributes is critical to the success of a system, and a variety of
qualitative and quantitative techniques are used for analyzing specific quality attributes [Bar-
bacci 95], [Barbacci 96], [Rushby 93].^ However, quality attribute goals, by themselves, are
not definitive enough either for design or for evaluation. They must be made more concrete.
Using modifiability as an example, if a system can be easily adapted to have different user
interfaces but is dependent on a particular operating system, is it modifiable? The answer is
that it depends on which modifications to the system are expected over its lifetime. That is, the
abstract quality goal of modifiability must be made concrete.

System-specific scenarios can be used to more clearly describe the quality attributes that are
important to the system and what the desired quality attribute responses should be. Scenarios
are short stories that describe an interaction with the system that exercises a particular quality
attribute. For example, a scenario makes the modifiability requirement above more explicit as

follows:

"An improved COTS^ discrete event generator product is available for the sys-
tem, and the system permits engineers to remove the old discrete event genera-

tor and incorporate the new one in less than two person-weeks."

These techniques have evolved in separate communities, each with its own vernacular and point of view, and have typically
been performed in isolation. Emerging international standards might eventually bring some clarity to the field [IEEE 90],
[IEEE 92], [ISO 01].

COTS stands for commercial off-the-shelf.

Ct\/IU/SEI-2003-TR-016

To be useful, a scenario must, at the very least, have a clear stimulus and response. The stimu-
lus is the part of the scenario that describes an agent or factor that initiates the system to react
in some way. In the example above, the stimulus is "An improved COTS discrete event gener-
ator product is available and required for the system." The response is the system's reaction to
the stimulus. In the example above, the response is "...the system permits engineers to remove
the old discrete event generator and incorporate the new one in less than two person-weeks."
An important part of the response is a clear response measure. Simply saying "modify the sys-
tem to incorporate the new discrete event generator" would not describe how well the archi-
tecture accommodated the modification. Given enough time and money, any modification is
possible. However, in this scenario, a response measure of "two person-weeks" is imposed,
forcing the architect to ensure that the system is modifiable with respect to some very particu-

lar and measurable criteria.

In addition to stimulus and response, it is often useful to include in the scenario a third compo-
nent—the environment in which the scenario takes place. For example, if a system has differ-
ent modes of operation (i.e., peak vs. low demand, normal operation vs. maintenance mode),
the environment helf)s clarify the scenario. An acceptable or easy-to-achieve response under
one environment might be unacceptable or stressful to achieve in a different environment.

System requirements often focus on functionality and provide only vague descriptions of the
quality attribute requirements. Certainly, meeting the specified functionality is an important
consideration when designing a system. However, a negative side effect of functionality driv-
ing architectural design is that the essential quality attributes are often overlooked or omitted
from the architectural design. When this happens, the architect often makes assumptions
regarding which quality attributes are important to the stakeholders.

System decomposition decisions can also affect the way in which the functionality gets imple-
mented and how well the quality attribute requirements are met. Modifiability, interoperabil-
ity, availability, and other quality attributes may well be compromised.

In addition, achieving a quality attribute can have side effects on other attributes [Boehm 78].
These side effects can be used to trade off between quality attributes. Promoting one quality
attribute requirement usually has an adverse effect on some other quality attribute require-
ment. Architectural decisions will promote some quality attribute requirements while inhibit-
ing others, thus resulting in quality attribute tradeoff decisions. These tradeoffs are best dealt
with in the earliest phases of system development—during the design of the architecture.

The eariier key quality attribute requirements are identified and prioritized, the more likely it
is that the essential quality attributes will be built into the system. It is more cost-effective to
reason about quality attribute tradeoffs early in the life cycle than later in the life cycle when
modifications are often difficult, impractical, or even impossible. There are several challenges
when addressing quality attributes in architectural design:

CMU/SEI-2003-TR-016

• What is the precise meaning of quality attributes—such as modifiability, security, perfor-

mance, and rehability—in the context of the system being built?

• How can you discover, characterize, and prioritize the key quality attributes before the

system is built?

• How can geographically dispersed communities of system stakeholders be engaged in a
disciplined and repeatable way in the discovery and characterization of quality attributes?

• How can all this information be used?

Addressing these issues is the primary purpose of the QAW.

CMU/SEI-2003-TR-016

CMU/SEI-2003-TR-016

QAW Method

The QAW is a facilitated, early intervention method used to generate, prioritize, and refine
quality attribute scenarios before the software architecture is completed. The QAW is focused
on system-level concerns and specifically the role that software will play in the system. The
QAW is dependent on the participation of system stakeholders—individuals on whom the sys-
tem has significant impact, such as end users, installers, administrators (of database manage-
ment systems [DBMS], networks, help desks, etc.), trainers, architects, acquirers, system and
software engineers, and others. The group of stakeholders present during any one QAW should
number at least 5 and no more than 30 for a single workshop. In preparation for the workshop,
stakeholders receive a "participants handbook" providing example quality attribute taxono-
mies, questions, and scenarios. If time allows, the handbook should be customized to the
domain of the system and contain the quality attributes, questions, and scenarios that are
appropriate to the domain and the level of architectural detail available.

The contribution of each stakeholder is essential during a QAW; all participants are expected
to be fully engaged and present throughout the workshop. Participants are encouraged to com-
ment and ask questions at any time during the workshop. However, it is important to recognize
that facilitators may occasionally have to cut discussions short in the interest of time or when it
is clear that the discussion is not focused on the required QAW outcomes. The QAW is an
intense and demanding activity. It is very important that all participants stay focused, are on
time, and limit side discussions throughout the day.

The QAW involves the following steps:

1. QAW Presentation and Introductions

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

The following sections describe each step of the QAW in detail.

CMU/SEI-2003-TR-016

3.1 Step 1: QAW Presentation and Introductions

In this step, QAW facilitators describe the motivation for the QAW and explain each step of
the method. We recommend using a standard slide presentation that can be customized

depending on the needs of the sponsor.

Next, the facilitators introduce themselves and the stakeholders do likewise, briefly stating
their background, their role in the organization, and their relationship to the system being built.

3.2 Step 2: Business/Mission Presentation

After Step 1, a representative of the stakeholder community presents the business and/or mis-
sion drivers for the system. The term "business and/or mission drivers" is used carefully here.
Some organizations are clearly motivated by business concerns such as profitability, while

others, such as governmental organizations, are motivated by mission concerns and find prof-
itability meaningless. The stakeholder representing the business and/or mission concerns (typ-
ically a manager or management representative) spends about one hour presenting

• the system's business/mission context

• high-level functional requkements, constraints, and quality attribute requirements

During the presentation, the facilitators listen carefully and capture any relevant information
that may shed light on the quality attribute drivers. The quality attributes that will be refined in
later steps will be derived largely from the business/mission needs presented in this step.

3.3 Step 3: Architectural Plan Presentation

While a detailed system architecture might not exist, it is possible that high-level system
descriptions, context drawings, or other artifacts have been created that describe some of the
system's technical details. At this point in the workshop, a technical stakeholder will present
the system architectural plans as they stand with respect to these early documents. Information

in this presentation may include

• plans and strategies for how key business/mission requirements will be satisfied

• key technical requirements and constraints—such as mandated operating systems, hard-
ware, middleware, and standards—that will drive architectural decisions

• presentation of existing context diagrams, high-level system diagrams, and other written

descriptions

During this time, facilitators continue to capture key aspects of the presentation for later refer-

ence.

CMU/SEI-2003-TR-016

3.4 Step 4: Identification of Arcliitectural Drivers

During steps 2 and 3, the facilitators capture information regarding architectural drivers that
are key to realizing quality attribute goals in the system. These drivers often include high-level
requirements, business/mission concerns, goals and objectives, and various quality attributes.

Before undertaking this step, the facilitators should excuse the group for a 15-minute break,
during which they will caucus to compare and consolidate notes taken during steps 2 and 3.
When the stakeholders reconvene, the facilitators will share their list of key architectural driv-
ers and ask the stakeholders for clarifications, additions, deletions, and corrections. The idea is
to reach a consensus on a distilled list of architectural drivers that include high-level require-
ments, business drivers, constraints, and quality attributes. The final list of architectural driv-
ers will help focus the stakeholders during scenario brainstorming to ensure that these
concerns are represented by the scenarios collected.

3.5 Step 5: Scenario Brainstorming

After the architectural drivers have been identified, the facilitators initiate the brainstorming
process in which stakeholders generate scenarios. The facilitators review the parts of a good
scenario (stimulus, environment, and response) and ensure that each scenario is well formed
during the workshop.

Each stakeholder expresses a scenario representing his or her concerns with respect to the sys-
tem in round-robin fashion. During a nominal QAW, at least two round-robin passes are made
so that each stakeholder can contribute at least two scenarios. The facilitators ensure that at
least one representative scenario exists for each architectural driver listed in Step 4.

Scenario generation is a key step in the QAW method and must be carried out with care. We
suggest the following guidance to help QAW facilitators during this step:

1. Facilitators should help stakeholders create well-formed scenarios. It is tempting for
stakeholders to recite requirements such as "The system shall produce reports for users."
While this is an important requirement, facilitators need to ensure that the quality attribute
aspects of this requirement are explored further. For example, the following scenario sheds
more light on the performance aspect of this requirement: "A remote user requests a data-
base report via the Web during peak usage and receives the report within five seconds."
Note that the initial requirement hasn't been lost, but the scenario further explores the per-
formance aspect of this requirement. Facilitators should note that quality attribute names
by themselves are not enough. Rather than say "the system shall be modifiable," the sce-
nario should describe what it means to be modifiable by providing a specific example of a
modification to the system vis-a-vis a scenario.

CMU/SEI-2003-TR-016

2. The vocabulary used to describe quality attributes varies widely. Heated debates often
revolve around to which quality attribute a particular system property belongs. It doesn't
matter what we call a particular quality attribute, as long as there's a scenario that

describes what it means.

3. Facilitators need to remember that there are three general types of scenarios and to ensure
that each type is covered during the QAW:

a. use case scenarios - involving anticipated uses of the system

b. growth scenarios - involving anticipated changes to the system

c. exploratory scenarios - involving unanticipated stresses to the system that can include

uses and/or changes

4. Facilitators should refer to the list of architectural drivers generated in Step 4 from time to
time during scenario brainstorming to ensure that representative scenarios exist for each

one.

3.6 Step 6: Scenario Consolidation

After the scenario brainstorming, similar scenarios are consolidated when reasonable.

To do that, facilitators ask stakeholders to identify those scenarios that are very similar in con-
tent. Scenarios that are similar are merged, as long as the people who proposed them agree and
feels that their scenarios will not be diluted in the process. Consolidation is an important step
because it helps to prevent a "dilution" of votes during the prioritization of scenarios (Step 7).
Such a dilution occurs when stakeholders split their votes between two very similar scenarios.
As a result, neither scenario rises to importance and is therefore never refined (Step 8). How-
ever, if the two scenarios are similar enough to be merged into one, the votes might be concen-
trated, and the merged scenario may then rise to the appropriate level of importance and be

refined further.

Facilitators should make every attempt to reach a majority consensus with the stakeholders
before merging scenarios. Though stakeholders may be tempted to merge scenarios with aban-
don, they should not do so. In actuality, very few scenarios are merged.

3.7 Step 7: Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating each stakeholder a number of
votes equal to 30% of the total number of scenarios generated after consolidation. The actual
number of votes allocated to stakeholders is rounded to an even number of votes at the discre-
tion of the facilitators. For example, if 30 scenarios were generated, each stakeholder gets 30 x
0.3, or 9, votes rounded up to 10. Voting is done in round-robin fashion, in two passes. During

10 CMU/SEI-2003-TR-016

each pass, stakeholders allocate half of their votes. Stakeholders can allocate any number of
their votes to any scenario or combination of scenarios. The votes are counted, and the scenar-
ios are prioritized accordingly.

3.8 Step 8: Scenario Refinement

After the prioritization, depending on the amount of time remaining, the top four or five sce-
narios are refined in more detail. Facilitators further elaborate each one, documenting the fol-
lowing:

• Further clarify the scenario by clearly describing the following six things:

1. stimulus - the condition that affects the system

2. response - the activity that results from the stimulus

3. source of stimulus - the entity that generated the stimulus

4. environment - the condition under which the stimulus occurred

5. artifact stimulated - the artifact that was stimulated

6. response measure - the measure by which the system's response will be evaluated

• Describe the business/mission goals that are affected by the scenario.

• Describe the relevant quality attributes associated with the scenario.

• Allow the stakeholders to pose questions and raise any issues regarding the scenario. Such
questions should concentrate on the quality attribute aspects of the scenario and any con-
cerns that the stakeholders might have in achieving the response called for in the scenario.

See the example template for scenario refinement in Appendix A. This step continues until
time runs out or the highest priority scenarios have been refined. Typically, time runs out first.

CMU/SEI-2003-TR-016 11

12 CMU/SEI-2003-TR-016

QAW Benefits

The QAW provides a forum for a wide variety of stakeholders to gather in one room at one
time very early in the development process. It is often the first time such a meeting takes place
and generally leads to the identification of conflicting assumptions about system requirements.
In addition to clarifying quality attribute requirements, the QAW provides increased stake-
holder communication, an informed basis for architectural decisions, improved architectural
documentation, and support for analysis and testing throughout the life of the system.

The results of a QAW include

• a list of architectural drivers

• the raw scenarios

• the prioritized list of raw scenarios

• the refined scenarios

This information can be used to

update the organization's architectural vision

refine system and software requirements

guide the development of prototypes

exercise simulations

understand and clarify the system's architectural drivers

influence the order in which the architecture is developed

describe the operation of a system

In short, the architect can use this information to design the architecture. In addition, after the
architecture is created, the scenarios can be used as part of a software architecture evaluation.
If the Architecture Tradeoff Analysis Method^'^ (ATAM^'^)'^ is selected as the software archi-
tecture evaluation method, the scenarios generated during the QAW can be incorporated as
seed scenarios in that evaluation [Clements 02a].

The QAW lends itself well to the capture of many architecturally relevant materials. Software
architectural documentation is a collection of view packets plus any documentation that
applies to more than one view [Clements 02b]. Each view packet contains a primary presenta-

4. Architecture Tradeoff Analysis Method and ATAM are service marl<s of Carnegie Mellon University.

CMU/SEI-2003-TR-016 13

tion, a catalog of the view's elements (including element behavior), a context diagram, a vari-
ability guide, architecture background (rationale, analysis results, and assumptions about the
environment), and other information including mapping to requirements.

Several pieces of this information will be gleaned directly from the QAW. For example, sce-
nario generation can lead to the creation of use case diagrams, context diagrams, or their
equivalent. Refined scenarios can be documented as sequence diagrams or collaboration dia-
grams. Stakeholders' concerns and any other rationale information that is captured should be
recorded individually in a form that can be included in the appropriate view packet or over-
view documentation. Details that explain how to transition these artifacts into architectural
documentation is the subject of ongoing research.

In addition to the more immediate benefits cited above, the scenarios continue to provide ben-
efits during later phases of development. They provide input for analysis throughout the life of
the system and can be used to drive test case development during implementation testing.

14 CMU/SEI-2003-TR-016

Conclusions

Quality attribute requirements are the means by which a system is intended to meet its busi-
ness goals. These requirements must be recognized and considered early in the life cycle, and
the system and software architectures must be designed so that their quality attributes are met.
To do that, you must understand the quality attribute architectural drivers. The QAW, a method
for eliciting and explicitly documenting quality attribute requirements early in the develop-
ment process, provides a forum for stakeholders to come to consensus about these drivers. If
there are a large number of diverse, geographically scattered stakeholder groups, multiple
QAWs can be conducted at various stakeholder locations, after which their results can be con-
solidated.

The QAW also provides mechanisms for capturing other architecturally relevant materials; for
example, refined scenarios can be documented as sequence diagrams or collaboration dia-
grams. Stakeholders' concerns should be incorporated into design rationales. In addition, the
QAW might expose assumptions about the environment.

The refined scenarios developed during the QAW have been used to analyze system or soft-
ware architectures, and the process for conducting the analysis has been adapted to the needs
of individual organizations. A number of lessons learned from these experiences are described
by Barbacci [Barbacci 02] and Bergey and Wood [Bergey 02].

CMU/SEI-2003-TR-016 15

16 CMU/SEI-2003-TR-016

Appendix A QAW Roles and Template

The QAW is a one-day event facilitated by members of the Software Engineering Institute
^ggjSM^S gj^^ Facilitators capture the raw scenarios during the workshop and guide scenario

prioritization and refinement. The method calls for two roles, filled by at least two people:

• QAW lead: The lead ensures that the steps of the method are carried out during the work-
shop. The lead facilitates discussions, and ensures that the method is carried out in a
timely fashion and that the required QAW artifacts are produced.

• QAW scribe: The scribe captures the raw scenarios, their prioritization, the refined scenar-
ios, and any relevant issues that emerge during the workshop. The scribe uses the standard
QAW template shown below as a guide during the workshop to ensure that the appropriate

information is captured in a consistent manner.

<Organization> Quality Attribute Worl^shop (QAW) - <date>

1. QAW Overview and Introductions:

<Obtain list of attendees/take notes as appropriate>

2. Business/Mission Presentation:

<Capture driving quality attributes, issues, notes>

3. Architectural Plan Presentation:

<Capture driving quality attributes, issues, notes>

4. Identification of Architectural Drivers:

<Share the information from steps 2 and 3. Then, after a few minutes, ask for clarifications
and corrections to the list of architectural drivers. That list will help facilitators ensure cover-

age during scenario brainstorming. >

SEI is a service mark of Carnegie Mellon University.

CMU/SEI-2003-TR-016 17

5. Scenario Brainstorming:

<Elicit raw scenarios from the stakeholder community in round-robin fashion. Use the table

below, inserting rows as needed. >

Table 1: Blank Raw Scenario Table

Scenario#

#1

#2

#3

#4

#5

Description Votes

6. Scenario Consolidation:

<Cut and paste the Raw Scenario Table above. Merge similar and duplicate scenarios using
stakeholders' input. Cut and paste merged scenarios. Also merge cells in the Scenario^ col-

umn as necessary. >

7. Scenario Prioritization:

<Prioritize scenarios. Each stakeholder gets votes equal to 30% of the total number of scenar-

ios generated. Add a column titled "Votes. ">

8. Scenario Refinement:

<Fully develop the scenario to include details such as how long, how much, how often, when,
environment, who, and so forth.>

18 CMU/SEI-2003-TR-016

Table 2: Blank Scenario Refinement Table

Scenario Refinement for Scenario N

Scenario(s):

Business Goals:

Relevant Quality
Attributes:

1
0) c
o a.
E
o o
o
CO c
0)

Stimulus:

Stimulus Source:

Environment:

Artifact (If Known):

Response:

Response
Measure:

Questions:

Issues:

CMU/SEI-2003-TR-016 19

20 CMU/SEI-2003-TR-016

Appendix B Example Scenario
Refinement

Table 3: Example Scenario Refinement Table

Scenario Refinement for Scenario N

Scenario(s): When a garage door opener senses an object in the door's path,
it stops the door in less than one millisecond.

Business Goals: safest system; feature-rich product

Relevant Quality
Attributes:

safety, performance

c
c o o.
E o o
o
(0 c
0) u
(0

Stimulus: An object is in the path of a garage door.

Stimulus Source: object external to system, such as a bicycle

Environment: The garage door is in the process of closing.

Artifact (If Known): system's motion sensor, motion-control software component

Response: The garage door stops moving.

Response
Measure:

one millisecond

Questions: How large must an object be before it is detected by the sys-
tem's sensor?

Issues: May need to train installers to prevent malfunctions and avoid
potential legal issues.

CMU/SEI-2003-TR-016 21

22 CMU/SEI-2003-TR-016

References

URLs are valid as of the publication date of this document.

[Barbacci 95]

[Barbacci 96]

Barbacci, M.; Klein, M.; Longstaff, T.; & Weinstock, C. Quality
Attributes (CMU/SEI-95-TR-21, ADA307888). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
1995. <http://www.sei.cmu.edu/publications/documents
/95 .reports/95 .tr.021 .html>.

Barbacci, M.; Klein, M.; & Weinstock, C. Principles for Evaluat-

ing the Quality Attributes of a Software Architecture (CMU/SEI-
96-TR-36, ADA324233). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996.
<http://www.sei.cmu.edu/publications/documents/96.reports
/96.tr.036.html>.

[Barbacci 02]

[Bass 03]

[Bergey 02]

[Boehm 78]

[Clements 02a]

Barbacci, M. SEI Architecture Analysis Techniques and When to

Use Them (CMU/SEI-2002-TN-005, ADA413696). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2002. <http://www.sei.cmu.edu/publications/documents
/O2.reports/02tn005.html>.

Bass, L.; Clements, P.; & Kazman R. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

Bergey, J. & Wood, W. Use of Quality Attribute Workshops
(QAWs) in Source Selection for a DoD System Acquisition: A
Case Study (CMU/SEI-2002-TN-013, ADA405848). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2002. <http://www.sei.cmu.edu/publications/documents
/O2.reports/02tn013 .html>.

Boehm, B. W. Characteristics of Software Quality. New York,
NY: American Elsevier, 1978.

Clements, P.; Kazman, R.; & Klein, M. Evaluating Software

Architectures: Methods and Case Studies. Boston, MA: Addison-
Wesley, 2002.

CMU/SEI-2003-TR-016 23

[Clements 02b] Clements, P.; Bachmann, R; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Boston, MA: Addison-Wesley, 2002.

[IEEE 90] Institute of Electrical and Electronics Engineers. IEEE Standard
Glossary of Software Engineering Terminology (IEEE Standard
610.12-1990). New York, NY: Institute of Electrical and Elec-

tronics Engineers, 1990.

[IEEE 92] Institute of Electrical and Electronics Engineers. Standard for a
Software Quality Metrics Methodology (IEEE Standard 1061-
1992). New York, NY: Institute of Electrical and Electronics

Engineers, 1992.

[INCOSE 96] International Council on Systems Engineering (INCOSE).
INCOSE Systems Architecture Working Group (Processes c&
Methods Technical Committee), <http://www.incose.org/cmtes

/sawg.html> (August 2003).

[ISO 01] International Organization for Standardization (ISO)/Intema-
tional Electrotechnical Commission (lEC). Software Engineer-
ing—Product Quality (ISO Std 9126). Geneva, Switzerland: ISO/

EEC, 2001.

[Rushby 93] Rushby, J. Critical System Properties: Survey and Taxonomy.
(CSL-93-01). Menlo Park, CA: Computer Science Laboratory,
SRI International, 1993.

24 CMU/SEI-2003-TR-016

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden (or this collection of information is estinnated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathenng
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information including suggestions for reducing this burden, to Washington Headquarters Sen/ices, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperworl< Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

August 2003
4. TITLE AND SUBTITLE

Quality Attribute Workshops (QAWs), Third Edition
6. AUTHOR{S)

Mario R. Barbacci, Robert Ellison, Anthony J. Lattanze, Judith A. Stafford,
Charles B. Weinstock, William G. Wood
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

3. REPORT TYPE AND DATES COVERED

Final

5. FUNDING NUMBERS

F19628-00-C-0003

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TR-016

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2003-016

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Quality Attribute Workshop (QAW) is a facilitated method that engages system stakeholders early in the
life cycle to discover the driving quality attributes of a software-intensive system. The QAW was developed to
complement the Architecture Tradeoff Analysis Method^"^ (ATAM^"^) and provides a way to identify important
quality attributes and clarify system requirements before the software architecture has been created.

This is the third edition of a technical report describing the QAW. We have narrowed the scope of a QAW to
the creation of prioritized and refined scenarios. This report describes the newly revised QAW and describes
potential uses of the refined scenarios generated during it.

14. SUBJECT TERMS

quality attributes, scenarios, attribute requirements, attribute tradeoffs,
Quality Attribute Workshop, QAW

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

NISN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIRCATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

36
16. PRICE CODE

20. UMPTATION OF ABSTRACT

UL

standard Fomi 298 (Rev 2-1
Prescribed by ANSI Std. Z39-18
298-102

